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Exact Solutions for Radial Schriidinger Equations 
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An infinite set of exact solutions for the three-dimensional Schr6dinger equation 
with the interactions ar 2 + br 4 + cr 6 and r 2 + kr2l(1 + gr 2) is presented. The 
conditions under which these solutions can occur are given. Some previously 
published errors are corrected. 

The determination of exact and numerical solutions to the time-indepen- 
dent three-dimensional Schr6dinger equation with spherical potentials has 
been an object of study for many years. The related radial Schr6dinger 
equation for this problem reads 

---2 dr--- 5 + ~ V(r)  + t~t(r ) = Et~t(r  ) (1)  

In the last 15 years many spherical potentials have been considered; two of 
them find applications in various branches of physics: 

(i) The doubly anharmonic oscillator (also called sextic potential), 

V ( r )  = a r  2 + b r  4 q- c r  6 (2) 

present in studies for structural phase transitions (Khare and Behra, 1980), 
polaron formation in solids (Amin, 1976, 1982), and the concept of false 
vacua in field theory (Coleman, 1988). 
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(ii) The nonpolynomial oscillator 

hr 2 
V(r) = r 2 + - -  (3) 

1 + gr  2 

important for its application to field theory in zero dimensions (Salam and 
Strathdee, 1976) and quantum optics (Haken, 1965). 

In a series of papers exact solutions of the SchrOdinger equation for the 
potential (2) have been constructed (Flessas and Das, 1980; Kaushal, 1989; 
Bose and Varma, 1990; Singh et al., 1990; Parui et al., 1994; Flessas, t981, 
1982). For the potential (3) the eigenvalues for the one-dimensional case 
have been studied in detail (Flessas, 1981, 1982; Varma, 1981; Lai and Lin, 
1982; Whitehead et al., 1982). The three-dimensional case has not been 
discussed very much. Only Znojil (1991b) considered the lowest lying exact 
eigenstate in a much broader context. Roy et  aL (1988) have shown that the 
nonpolynomial interaction (3) is of a supersymmetric nature if the coupling 
constants satisfy certain relations. In this way they also obtain the ground- 
state energy. 

In this paper we revisit the above eigenvalue problems in order to correct 
some of the misunderstandings reported in results for the potential (2) (Singh 
et al., 1990; Parui et al., 1994) and to extend the results for potential (3). In 
first instance we follow the technique of Singh et  al. (1990) to solve (1) for 
V(r) = ar  2 + br  4 + cr  6. We substitute in (1) 

~l(r) = r/+ldo(r) exp - 2  ~r2 -- 4 ~r4 (4) 

to obtain a second-order equation for +(r), 

daub(r) 2 13r + ~ r  3 - _ ~ 1  dd~(r) + [h + ~rZl~(r) = 0 (5) 
dr 2 r dr  

with 

h = 2E - [3(21 + 3) (6) 

cr = 132- a -  a(21 + 5) (7) 

Singh et aL (1990) and also Parui et al. (1994) proposed for +(r) a series of 
the form 

?p(r) = ~ C~r k (8) 
k=0 

giving rise, after substitution in (5), to the recurrence relation 
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(k + 2)(k + 2l + 3)Ck+2 + (}k - 2[3k)Ck + (or - 2offk - 2))Ck-2 = 0 

(9) 

Since this recurrence relation connects the alternate coefficients C~-2, Ck, 
and C~+2, the above-cited authors argued that this fact enables them to choose 
the coefficients Co and Ct independently. First they choose C~ = 0 and Co 

0, by which +(r) are only even functions; as a second option they took 
Co = 0 and Cl :~ 0, giving rise to odd functions qb(r). As an example, they 
tabulate the six lowest lying eigenvalues and the conditions between the 
coefficients a, b, and c necessary to reach them. This technique is useful if 
one had checked the existence of a solution of (5) for general l value of the 
type +(r) = Co and qb(r) = Clr. One can easily verify that for qb(r) = Co 
the following conditions have to be fulfilled: 

2E = [3(21 + 3) 
- - a  q- 132 = c~(2l + 5) 

b = 2a13 
C~---OL 2 

(10) 

with 

E = ~(2l  + 3) 

b 2 = 4c[a + ,,/-~(2/+ 5)] (11) 

We have chosen ct = + ~ and 13 = b/(24~) in accordance with the discussion 
by Singh et al. (1990). For ~b(r) = Clr  the following conditions have to 
be fulfilled: 

Cl(l  + 1 ) = 0  
C1(13(2l + 5) - 2E) = 0 
C ~ ( - a  + 132 - 213(2l + 7)) = 0 (12) 
C l ( - b  + 2otl3) = 0 
C l ( - c  + a 2 ) = 0  

The first condition in (11) is essential: either Ct = 0, by which no odd 
function qb(r) which is a solution of (5) for all l can be constructed; or 1 = 

- 1 and the problem reduces to the well-known one-dimensional case. Omit- 
ting the first condition in (11) results in the second mentioned eigenvalue 

Out of this one obtains the results already reported in Flessas and Das (1980), 
Kaushal (1989), Bose and Varma (1990), Singh et al. (1990), and Parui et 
al. (1994): 
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and solvability condition given in Singh et al. (1990) and Parui et al. (1994), 
which are obviously erroneous. This means that no solutions of the type (4) 
with odd ~b(r) functions for (1) can exist. 

In order to complete our results, we also give the eigenvalue and solvabil- 
ity conditions when d~(r) is of degree two and four, since many of typographic 
errors are present in Singh et al. (1990) and in Parui et al. (1994). When 
+(r) = Co + C2 r2 one obtains 

b{ 
E = 2---~c I +  

with 

5 I 8c3,2 ],,2} 
7 + 1 + --~5-- (2l + 3) 

b 2 = 4c(a + ,/7(21 + 9)) 

and when +(r) = Co + C2 r2 + C4 r4 

b[ 7 ( 1 ) ]  
E =  2--~c l + ~ + 4 ~ c o s  ~ 0 + 2 w n  , n = 0 , 1 , 2  

with 

(13) 

1 [  16c3/2(I+2)3 4c3/2 1 
q = ~ 1 q- b2 , cos(0) - b2 q3/2 (14) 

The relations (11), (13), and (14) also give the eigenvalue expressions for 
the one-dimensional case for the even-parity situation (l = - 1) and the odd- 
parity one (l = 0). 

For potential (3) a quite analogous technique can be introduced. In a 
similar way it is also obvious that exact solutions of (1) of the type 

~t(r) = r l+lqb(r)exp - ~  (15) 

C 0 ( 2 E - 2 l - 2 = 0  
Co(2Eg - 2gl 3g - X) = 0 

(16) 

This means that either Co = 0 or 2E = (2l + 3) together with X = 0. None 
of these solutions are relevant. 

For ~b(r) = Co + C2r z three equations occur: 

exist and that only even functions +(r) can be withheld. 
When we choose cb(r) = Co the following conditions have to be fulfilled: 
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-3Co + 2CoE - 2Col + 2C2(2l + 3) = 0 
2 C 2 E -  3Cog + 6C2g + 2CoEg 

- C 2 ( 2 / +  7) - 2Cogl - kCo + 4C2gi = 0 
-7C2g  + 2C2Eg - 2Czgl - kC2 = 0 

(17) 

with 

k = - 2 g ( 2  + g(2l + 3)) (18) 

a result already mentioned in Znojil (1991b) and Roy et al. (1988). Notice 
that up to a normalization factor +(r) is proportional to (1 + gr2). 

With qb(r) = Co + C2 r 2 + Ca r 4 the computation becomes quite complex. 
A set of four equations has to be solved: 

f 2 E g -  k -  l l g -  2 g l =  0 
2C4E - kC2 - 7C2g + 20C2g + 2C2Eg 

- C4(2l + 11) - 2C2gl + 8C4gl = 0 

2C2E - kC0 + 20C4 - 3Cog + 6C2g + 2CoEg - C2(21 + 7) 
+ 8C4l - 2Cogl + 4C2gl = 0 

2CoE + 6C2 - C0(2/+ 3) + 4C2l = 0 

Solving these equations delivers three solutions for k: 

k - - O  

relating again the potential to the harmonic oscillator one, and 

X - - � 89  + 26g + t2g/) 

_+ [(12 + 26g + 12gl) 2 

- 4(32 + 160g + 120g 2 + 64gl + 128g2/+ 32g2/2)] I/2} 

giving rise to two eigenvalues 

(19) 

There are two solutions, of which only one is relevant: 
(i) C2 = -2Co/(2l  + 3) together with h = 0, bringing us back to the 

classical harmonic oscillator problem. 
(ii) C2 = Cog, giving rise to 
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E -  5 13g + l -  3gl  
2 2 

§ (4 - 4g + 49g 2 + 8gl + 28g2l + 4g212) It2 
_ ( 2 0 )  

2 

Notice again that the one-dimensional eigenvalues (Flessas, 1981, 1982; 
Varma, 1981; Lai and Lin, 1982; Whitehead et  at. ,  1982) follow directly 
from the above expressions when replacing I either by -1  or 0. 

The potentials (2) and (3) belong to more general classes of three- 
dimensional anharmonic potentials, for which eigenvalues in a closed form 
can be derived. It is mentioned by Flessas and Das (1980) that the potential 

V(r) = toZr 2 + a2r 4 + a3r  6 + . . .  + a2n+lr 2(zn+l) (21) 

can have eigenfunctions of the general type 

t~(r)l(r) = r l+l~(r)  exp( -b t r  2 - b2 r4 . . . . .  bn+lr 2(~+t)) (22) 

provided n relations hold among the 2n constants a2, a3 . . . . .  a2n+> Only the 
case for n = 2 is worked out to a certain extent. Similarly Znojil (1991a) 
and Hislop et  al. (1990) discussed potentials 

V(r) = tor 2 + f ( r )  (23) 
g(r)  

where f ( r )  and g(r)  are polynomials in r 2 of degree N, also called Pad6 
anharmonic oscillators. Only a few very simple examples are touched upon 
by Znojil (1991a) and Hislop e t  al. (1990). In order to obtain closed expres- 
sions for eigenvalues many relations between the coefficients of the several 
powers in r in f ( r )  and g(r)  have to be fulfilled. 
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